Геометрический смысл производной

Ключевые слова: геометрический смысл производной

Геометрический смысл производной. Производная в точке x 0 равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке.

ghjbpd

Рассмотрим график функции y = f ( x ):

ana3b

Из рис.1 видно, что для любых двух точек A и B графика функции: $$\frac{f(x_{0}+\Delta x)-f(x_{0})}{\Delta x}=tg\alpha$$, где - угол наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей.
Если зафиксировать точку A и двигать по направлению к ней точку B, то $$\Delta x$$ неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС.
Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A.
Отсюда следует:

производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке.

В этом и состоит геометрический смысл производной.

2017-01-13 22:13:43