ОДЗ сложно заданных функций: примеры и достаточные знания, необходимые для решения

Сложно заданные функции
Достаточные знания

$$\quad $$ $$f = \sqrt {\frac{1}{{\left| {x - 1} \right|}} - \frac{1}{{\left| {x - 2} \right|}}} $$

$$\quad $$ $$D\left( f \right) = D\left( {\sqrt {g(x)} } \right) \cap D\left( {\frac{1}{{h(x)}}} \right)$$

$$\quad $$ $$f = tg\left( {\frac{\pi }{2}\log _2 \left( { - x^2 - 7x + 8} \right)} \right)$$

$$\quad $$ $$D\left( f \right) = D\left( {tgp(x)} \right) \cap D\left( {\log _a h(x)} \right)$$

$$\quad $$ $$f = \frac{1}{{\arcsin \left| {\lg \left( {\sqrt {x - 1} - 5} \right)} \right|}}$$

$$\quad $$ $$D\left( f \right) = D\left( {\arcsin p(x)} \right) \cap D\left( {\log _a h(x)} \right) \cap D\left( {\sqrt {g(x)} } \right) \cap D\left( {\frac{1}{{d(x)}}} \right)$$

$$\quad $$ $$f = \log _2 \left( {\arccos \left( {\frac{1}{{\sqrt {x^2 - x} }} + 3} \right)} \right)$$

$$\quad $$ $$D\left( f \right) = D\left( {\sqrt {g(x)} } \right) \cap D\left( {\arccos p(x)} \right) \cap D\left( {\log _a h(x)} \right)$$

$$\quad $$ $$f = \ln \left( {\log _4 \left( {x + \sqrt {x - 3} } \right) - \log _{x^2 - 1} 7} \right)$$

$$\quad $$ $$D\left( f \right) = D\left( {\sqrt {p(x)} } \right) \cap D\left( {\log _a h(x)} \right) \cap D\left( {\log _{d(x)} a} \right) \cap D\left( {\ln g(x)} \right)$$