Правильная пирамида

Ключевые слова: пирамида, многогранник, правильная пирамида, грань, объем, боковая поверхность

Многогранник, у которого одна грань, называемая основанием, – многоугольник,
а другие грани – треугольники с общей вершиной, называется пирамидой.

Грани, отличные от основания, называются боковыми.
Общая вершина боковых граней называется вершиной пирамиды.
Ребра, соединяющие вершину пирамиды с вершинами основания, называются боковыми.
Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды на ее основание.

Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.

Апофемой боковой грани правильной пирамиды называется высота этой грани, проведенная из вершины пирамиды.

Плоскость, параллельная основанию пирамиды, отсекает ее на подобную пирамиду и усеченную пирамиду.

piramda

Свойства правильных пирамид
  • Боковые ребра правильной пирамиды - равны.
  • Боковые грани правильной пирамиды - равные друг другу равнобедренные треугольники.

Если все боковые ребра равны, то

  • высота проектируется в центр описанной окружности;
  • боковые ребра образуют с плоскостью основания равные углы.

Если боковые грани наклонены к плоскости основания под одним углом, то

  • высота проектируется в центр вписанной окружности;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани



См. также:
Усеченная пирамида