Задача о квадратуре круга

  Вероятно, задача была известна уже за две тысячи лет до н. э. в Древнем Египте и Вавилоне. В то время у египетских математиков находятся первые решения задачи, как построить квадрат, равновеликий данному кругу, или определить соотношение между окружностью и её диаметром.
 В папирусе Ринда, написанным Ахмесом, говорится, что сторона квадрата, равновеликого площади круга, равна восьми девятым диаметра (так что $$\pi $$  = 3,16). У древних вавилонян и евреев принималось, что длина окружности ровно втрое больше диаметра и, следовательно,
$$\pi $$  = 3.
     Древнегреческие математики также достигли чрезвычайно большого искусства в геометрических построениях. Они еще издавна преобразовывали любую прямолинейную фигуру с помощью циркуля и линейки в произвольную прямолинейную, равновеликую ей. Так появилась мысль обобщить эту задачу: построить с помощью циркуля и линейки такой квадрат, площадь которого была бы равна площади данного круга. Задача получила название квадратуры круга, и многие ученые пытались выполнить такое построение. Однако решение не поддавалось их усилиям. Но первая прямая ссылка на неё относится к V в. до н. э. По свидетельству древнегреческого историка Плутарха, философ Антифонт, коротая время в тюрьме, пытался квадрировать круг, т. е. превратить его в равновеликий квадрат.
       Полного решения, предложенного Антифонтом, не сохранилось, но считается, что оно состояло в следующем: производя последовательно удвоение сторон вписанного многоугольника, он получал  в конце-концов многоугольник с очень большим числом сторон, которые, по мысли Антифонта, должны совпадать с соответствующими им дугами окружности. Но, так как для любого многоугольника можно с помощью циркуля и линейки построить равновеликий квадрат, то такой квадрат можно построить и для данного круга. От Плутарха известно, что лучшие математики того времени (в том числе Платон, Евдокс) посещали в темнице Антифонта и были удовлетворены его решением, а ведь требования к строгости доказательств в то время были не ниже сегодняшних.

image003 image005 image007

 

Архимед (287-212 до н.э.), вычисляя периметры вписанных и описанных  96-ти угольников, в сочинении  «Измерение круга» показал, что периметр вписанного многоугольника с любым числом сторон всегда меньше, а описанного – всегда больше длины данной окружности, и что величина  заключается между пределами 3,1408 < $$\pi $$  < 3,1429.

image009
Известный математик древности  Гиппократ Хиосский (ок. 400 г. до н.э.) первый указал на то, что площадь круга пропорциональна квадрату его диаметра. Но провести строгое доказательство ученый в то время еще не мог: не было подходящего метода. Попытки Гиппократа решить задачу о квадратуре круга привели его к открытию квадрируемых фигур (то есть таких, площади которых выражаются в рациональных числах), ограниченных пересекающимися окружностями. Найденное Гиппократом Хиосским соотношение позволило свести задачу о квадратуре круга к построению с помощью циркуля и линейки, если это возможно, полученного коэффициента пропорциональности, одного и того же для всех кругов. Они впоследствии получили название гиппократовых луночек. Казалось бы, что с появлением таких луночек найден ключ к решению задачи о квадратуре круга. Она была бы решена, если бы удалось разбить круг на квадрируемые части.
         Были найдены и другие пути определения квадратуры круга: кроме циркуля и линейки использовали различные инструменты или специально построенные кривые. Так, в V в. до н.э. греческий математик Гиппий из Элиды изобрел кривую, впоследствии получившую название квадратрисы Динострата (ее назвали по имени другого древнегреческого математика, жившего несколько позже и указавшего способ построения квадратуры круга при помощи этой кривой).
         Все предложенные решения в лучшем случае давали приближённое значение с достаточно хорошей точностью. Однако все-таки оставались принципиально приближёнными. Впрочем, авторы таких построений часто не сомневались в их абсолютной точности и горячо отстаивали свои заблуждения. Один из самых громких споров на эту тему произошёл в Англии между двумя выдающимися учёными XVII в., философом Томасом Гоббсом и математиком Джоном Валлисом. В весьма почтенном возрасте Гоббс опубликовал около десяти «решений» задачи о квадратуре круга.
       Однако ученых Древней Греции и их последователей такие решения, находящиеся за пределами применения циркуля и линейки, не удовлетворяли. Будучи вначале чисто геометрической задачей, квадратура круга превратилась в течение веков в исключительно важную задачу арифметико-алгебраического характера, связанную с числом П , и содействовала развитию новых понятий и идей в математике.
      Отношение длины окружности к ее диаметру есть величина постоянная, не зависящая от радиуса круга, она обозначается буквой П. Теперь известно, 
$$\pi $$ - число иррациональное, оно выражается бесконечной непериодической десятичной дробью 3,1415926…, которое было вычислено с 707 десятичными знаками математиком В. Шенксом. Этот результат вместе с формулой вычислений он обнародовал в 1837 году. Ни одна ещё задача подобного рода не решалась с таким огромным приближением и с точностью, далеко превышающее отношение микроскопических расстояний к телескопическим. Работа, сделанная Шенксом, в сущности, бесполезна – или почти бесполезна. Но, с другой стороны, она может служить довольно убедительным доказательством противного тому, кто до сих пор ещё надеется, что можно найти точное отношение длины окружности к диаметру.
       Можно вычислить приближенное значение  . Однако не в практическом отношении интересовала людей задача о квадратуре круга, а интересовала её принципиальная сторона: возможно ли точно решить эту задачу, выполняя построения с помощью только циркуля и линейки. Поэтому квадратура круга была в прежние времена самой заманчивой и соблазнительной задачей. Армия «квадратурщиков» неустанно пополнялась каждым новым поколением математиков. Все усилия были тщетны, но число их не уменьшалось. В некоторых умах доказательство, что решение не может быть найдено, зажигало ещё большее рвение к изысканиям.
        Лишь в 80-х годах 19в. было строго доказано, что решить задачу о квадратуре круга с помощью циркуля и линейки невозможно. Эта задача становится разрешимой, если применять, кроме циркуля и линейки, еще другие средства построения.
        Термин «квадратура круга» стал синонимом неразрешимых задач. Вместе с тем предлагалось множество решений при помощи нетрадиционных инструментов. Всё это привело к возникновению и развитию совершенно новых идей в геометрии и алгебре. Анализируя материал по данной теме, мы пришли к выводу, что неразрешимость некоторых задач служит отправной точкой новых математических исследований, интригует, стимулирует и способствует развитию творчества

2017-08-07 21:45:06